

Superconducting Magnet R&D

Alexander Zlobin
Technical Division, Fermilab

Outline

Program goals

HFM technology development

Strand and cable R&D

LARP magnet R&D summary

Plans

Introduction/Conclusion

Fermilab's SC magnet R&D program addresses magnet issues important for Fermilab and for U.S. High Energy Physics

- Support of Tevatron Collider operations
 - Study of present Tevatron magnets in order to improve machine performance (poster)
 - o Development of special purpose magnets as required (e.g. short high strength dipoles, IR magnets for BTeV, etc.)
- Support of US participation in the LHC
 - O Development and construction of 1st Generation IR Quads
 - O Development of 2nd generation IR magnets for the LHC luminosity upgrade (LARP)
- Development of high field SC accelerator magnets and technologies for future HEP facilities (VLHC, LC, etc.)

High Field Magnet Program Goals

HFM Program is focused on the development of next generation SC accelerator magnets with high operating fields (>10 T at 4.5 K) and large operating margins.

This Program was started in 1998 and originally driven by a VLHC needs, which determined main magnet parameters such as field range, aperture, magnet design, etc.

Since 2001 it is regarded as a generic base magnet R&D.

The specific feature of our program is that it focuses on practical magnet designs:

o we worry about aperture and length, field quality, protection, manufacturability, cost, reproducibility, etc... not just peak field

Superconductor and Technologies

At the present time we develop accelerator magnets based on Nb₃Sn superconductor:

- O Critical parameters of Nb_3Sn (B_{c2} =27T, T_c =18K,and J_c (12T,4.2K)~2.5-3 kA/mm²) are much higher than NbTi parameters
- o High-performance Nb₃Sn strands are commercially available in long lengths at affordable price

We also keep an eye on other existing or new superconductors such as Nb_3Al , MgB_2 , HTS, etc. which eventually may become potential candidates for accelerator magnets.

Since most of the new superconductors including Nb₃Sn are brittle => we need new magnet technologies for accelerator magnets based on brittle superconductors.

We explore two basic approaches: Wind-and-React and React-and-Wind.

Nb3Sn strands produced using the Internal Tin and Powder-In-Tube technologies

Design Approaches

We are working with two basic dipole coil designs:

- shell-type coils with a cos-theta azimuthal current distribution
 - o Traditional coil design for SC accelerator magnets, due to small bending radii requires W&R approach
- block-type coils arranged in the common coil configuration
 - o Friendly to brittle conductors thanks to large bending radii, allows R&W approach

Both designs have advantages in different applications and both need to be studied and optimized.

Magnet R&D Infrastructure

Fermilab has the necessary infrastructure to perform successful magnet R&D including:

- Cable insulating machine
- Winding tables (<2m,<15m)
- Coil HT oven and retorts (<1m)
- Epoxy impregnation facility (<6m)
- Collaring/yoking presses (<15m)
- Magnet test facilities (vertical <4m,horizontal <15m)

The available infrastructure allows performing both short and long magnet R&D.

W&R Cos-Theta Dipole Models

The goal of this work is to develop 11 T Nb_3Sn accelerator quality magnets based on the W&R technique.

The main design features of our 1-m long costheta Nb₃Sn dipole models (HFDA) are:

- o High-Jc 1-mm Nb₃Sn strand
- o 28 strand cable
- o 2-layer coil with cold iron yoke
- o 43.5-mm diameter bore
- o Maximum field of 12 T at 4.5 K

This design rests on the designs of the first Nb₃Sn dipole models developed in 1990s:

- o 10 T dipole model (CERN/ELIN)
- o 11 T MSUT (Twente University)
- o 13 T D20 (LBNL)

28-strand cable developed and fabricated at Fermilab

Cos-Theta Dipole Test Summary

Three short models (HFDA02-04) were fabricated and tested in FY2001-2002:

- Good, well understood field quality including geometrical harmonics and coil magnetization effects
 - We developed and tested a simple and effective passive correction system to correct large coil magnetization effect in Nb₃Sn accelerator magnets
- ❖ Quench current was only 50-60% of expected short sample limit (B_{max}~6-7 T)

Quench performance of HFDA short models

Magnetic Mirror

Since last year we have focused on understanding and improving magnet quench performance.

We study and optimize the quench performance issues using half-coils and a magnetic mirror (HFDM).

The main advantages of this approach are:

- The same mechanical structure and assembly procedure
- o Advanced instrumentation
- o Shorter turnaround time
- o Lower cost

FNAL Magnetic mirror

<u> Mirror Magnet Tests</u>

Mirror magnet quench summary

HFDA03b instrumentation and quench location

Three mirror magnets HFDA03a, HFDA03b, and HFDM02 have been tested last year:

•quench current was on the same level as in the dipole models

Quench location, quench propagation velocity, critical current

and temperature margin measurements point out on

magnetic instability in Nb₃Sn strands at low fields.

Strand Instability Studies

Instabilities in strand quench current and magnetization

Strand quench current calculations and measurements revealed serious instability problems for the 1 mm MJR Nb_3 Sn strand used in our cos-theta dipole models.

Cable Short Sample Tests

Cable test program has been launched last summer to address the conductor stability issues:

- **❖Fermilab**: 23 kA SC Transformer, Bext=0T, T=1.9-4.2K
- **❖BNL**: 25 kA PS, Bext=0-7 T, T=4.3K
- **❖CERN**: 32 kA PS, Bext=0-10 T, P=0-100 MPa, T=1.8-4.2 K

First results:

- Good agreement of experimental data obtained at Fermilab and BNL on similar samples in similar test conditions
- The results are consistent with Fermilab's instability calculations and magnet test results
- These studies will be continued

28 strand MJR-1.0mm cable tested at BNL and Fermilab

Small Racetracks

- We also started testing cables at Fermilab using small racetrack coils:
 - o Use simple reliable mechanical structure developed at LBNL
 - o Coil design was modified to test real full-size cables in real conditions
- ❖ 1st (PIT1.0) Fermilab racetrack: tested in January-March 2004
 - o Racetrack SR01 reached the short sample limit @4.5K (see quench history)
 - o PIT1.0 cable is quite stable and can be used in model magnets
- We will continue testing Nb₃Sn cables with small racetracks before using them in real magnets.

Cos-theta Models

Mirror configuration HFDM03:

- o PIT 1mm cable
- o Optimized pre-stress
- o Advanced instrumentation
- * Fabrication has been completed last week
- * Test is scheduled for April.
- **❖** Goals:
 - o Reach 10 T field level
 - o Test mechanical structure at high fields

HFDM03 cold mass

Next steps:

- Dipole model HFDA05 (June 2004):
 - o 28-strand PIT 1mm cable (coil from HFDM03 + new half-coil)
- **❖** Dipole model HFDA06 (October 2004):
 - 28-strand PIT 1mm cable (two new half-coils)

W&R Summary

- Progress in understanding of the quench performance limitations was made:
 - o Nb₃Sn strand magnetic instabilities cause premature magnet quenches.
- To improve magnet quench performance we plan:
 - o Continuation of cable short sample testing at Fermilab, BNL, and CERN and cable testing with small racetracks
 - o Testing RRP and MJR 0.7mm strands and cables and use them in cos-theta models
 - Coil x-section for 0.7 mm strand has been modified

React & Wind Technology

Last year we accomplished the first phase of R&W technology study. The goals of this work were to study the possibilities and limitations of the R&W approach for Nb₃Sn magnets and develop a 10 T accelerator quality common coil dipole magnet based on this approach.

Experimental studies and optimization of R&W techniques were performed using 1-m long racetrack coils (HFDB):

- o sub-sized 41-strand cable
- o simple coil geometry: two flat racetrack coils separated by 5 mm gap
- o simple bolted mechanical structure
- o maximum field 11 T

Three R&W racetracks have been fabricated and tested in FY2001-2003:

o 2nd and 3rd racetracks reached 75-78% of their short sample limit

FNAL R&W racetrack

R&W Common Coil Dipole

We developed common coil dipole model (HFDC) which meets accelerator magnet requirements:

- o High-J_c 0.7 mm Nb₃Sn strand
- o Wide 60-strand cable
- Single-layer coil with cold iron yoke
- o Advanced mechanical structure
- o Magnet bore of 40 mm
- o Nominal field of 10 T at 4.5 K

The 1st common coil short model has been fabricated and tested in September, 2003:

- o Good, well understood field quality
- Long training, ~75% of quenches occurred in one of two coils
- Max quench current reached 60% of the short sample limit

FNAL Common coil dipole

Mechanical model

R&W Summary

Four 1-m long magnets based on reacted Nb₃Sn cable were fabricated and tested:

- All magnets survived the complicate fabrication process and reached 60-70% of the Short Sample Limit.
- >The critical current degradation of reacted cable was much larger than expected due to:
 - √Nb3Sn conductor limitations
 - √Magnet mechanics

To use the R&W approach in accelerator magnets both the conductor and the magnet technology have to be improved.

We will focus on the conductor studies and improvements.

Quench performance of R&W magnets

Material and Component R&D

- **❖** New generation accelerator magnets require advanced superconductors, structural materials and components.
- * Fermilab developed an infrastructure to perform extensive material R&D in support of the magnet R&D programs:

- Ovens for Nb₃Sn Heat Treatment
- Compact 28-strand cabling machine
- Sample compression fixtures
- Ic and M measurement equipment
- Compact 25 kA SC transformer
- SEM and optical microscopes
- Short Sample Test Facility
 - 15-17 T solenoid,
 - 1.5-100 K temperature insert

***** We are participating in National Conductor and Material Development Programs sponsored by DOE.

Nb₃Sn Strand R&D

We study 0.3-1.0 mm Nb₃Sn strands produced using different methods:

- o "Internal Tin" (IT, RRP)
- o "Distributed Tin" (DT)
- o "Modified Jelly Roll" (MJR)
- o "Powder in Tube" (PIT)

Strand studies include:

 $o I_c(B)/J_c(B)$ \Rightarrow magnet short sample limit

o RRR \Rightarrow quench protection

o M(B) \Rightarrow field quality (a) low fields

o magnetic instabilities \Rightarrow max quench current

o SEM studies & chemical analysis

o Strand expansion after HT \Rightarrow technology

o Heat treatment optimization

An example of our recent studies of strand stability is shown on slide #11 (more details in HFM poster).

Cable Development

We develop and fabricate Rutherford-type cables:

- o Different Nb₃Sn strand types
- o Rectangular and keystone x-section
- With and w/o resistive core
- Different packing factor
- o One and two-stage cables
- o Copper stabilizer
 - Cu tape wrapped on the cable

28-strand one-stage cable (FNAL)

28-strand two-stage cable (FNAL)

25 micron Cu tape (stabilizer) was wrapped around the cable using cable insulating machine.

Cable Studies

Cable studies include:

- ❖ I_c degradation due to
 - o **cabling**
 - o **bending**
 - o compression
 - o instabilities (slide #12)

* cable inter-strand resistance

Ic degradation of different Nb₃Sn strands during cabling vs. cable cross-section and packing factor.

 I_c degradation of different Nb $_3$ Sn strands inside cable vs. transverse pressure applied to the cable.

LARP magnet R&D

- Fermilab is responsible for the development of new generation IR quads for the future LHC luminosity upgrade
- * FY04 plan:
 - o IR quadrupole conceptual design studies and technology development
 - o preparation to short model R&D at Fermilab
- ***** Major studies and results (details in the HFM poster):
 - o Aperture limitation studies
 - Analysis and comparison of block-type and shell-type quad designs
 - o Analysis of the double-aperture quadrupoles
 - o Evaluation of different mechanical structures for large-aperture ${\rm Nb_3Sn}$ quads
 - o Thermal analysis of IR Nb₃Sn dipole and quarupole
 - O Development of a conceptual design of the first quadrupole short model

<u>Long-term Plan</u>

- ❖ In FY04-FY05 we are planning production and test of 2-3 Nb₃Sn model magnets per year.
 - The goals are to understand and improve the magnet technologies and quench performance, and optimize the field quality.
- ❖ In FY06 we will start testing first LARP short quadrupole model.
- ❖ When basic problems are understood, we plan to increase the production and tests of HFM models of different types (including models for LARP) to 5-6 per year.
 - o The goal is to study and optimize the performance reproducibility and magnet cost.
- ❖ Assuming that short model R&D is successful we could start developing infrastructure for long models in FY2006-2007 and start long coil testing in FY2007.